Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 25, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
ABSTRACT This paper presents high-order Runge–Kutta (RK) discontinuous Galerkin methods for the Euler–Poisson equations in spherical symmetry. The scheme can preserve a general polytropic equilibrium state and achieve total energy conservation up to machine precision with carefully designed spatial and temporal discretizations. To achieve the well-balanced property, the numerical solutions are decomposed into equilibrium and fluctuation components that are treated differently in the source term approximation. One non-trivial challenge encountered in the procedure is the complexity of the equilibrium state, which is governed by the Lane–Emden equation. For total energy conservation, we present second- and third-order RK time discretization, where different source term approximations are introduced in each stage of the RK method to ensure the conservation of total energy. A carefully designed slope limiter for spherical symmetry is also introduced to eliminate oscillations near discontinuities while maintaining the well-balanced and total-energy-conserving properties. Extensive numerical examples – including a toy model of stellar core collapse with a phenomenological equation of state that results in core bounce and shock formation – are provided to demonstrate the desired properties of the proposed methods, including the well-balanced property, high-order accuracy, shock-capturing capability, and total energy conservation.more » « less
-
null (Ed.)Abstract The proposal that core collapse supernovae are neutrino driven is still the subject of active investigation more than 50 years after the seminal paper by Colgate and White. The modern version of this paradigm, which we owe to Wilson, proposes that the supernova shock wave is powered by neutrino heating, mediated by the absorption of electron-flavor neutrinos and antineutrinos emanating from the proto-neutron star surface, or neutrinosphere. Neutrino weak interactions with the stellar core fluid, the theory of which is still evolving, are flavor and energy dependent. The associated neutrino mean free paths extend over many orders of magnitude and are never always small relative to the stellar core radius. Thus, neutrinos are never always fluid like. Instead, a kinetic description of them in terms of distribution functions that determine the number density of neutrinos in the six-dimensional phase space of position, direction, and energy, for both neutrinos and antineutrinos of each flavor, or in terms of angular moments of these neutrino distributions that instead provide neutrino number densities in the four-dimensional phase-space subspace of position and energy, is needed. In turn, the computational challenge is twofold: (i) to map the kinetic equations governing the evolution of these distributions or moments onto discrete representations that are stable, accurate, and, perhaps most important, respect physical laws such as conservation of lepton number and energy and the Fermi–Dirac nature of neutrinos and (ii) to develop efficient, supercomputer-architecture-aware solution methods for the resultant nonlinear algebraic equations. In this review, we present the current state of the art in attempts to meet this challenge.more » « less
An official website of the United States government
